
Decentralization of Control Loop for 

Self-Adaptive Software through 

Reinforcement Learning
Kishan Kumar Ganguly, Kazi Sakib

Institute of Information Technology

University of Dhaka, Dhaka, Bangladesh 

Presented By

Kishan Kumar Ganguly

Institute of Information Technology

University of Dhaka

WETSoDA ’17, December 4, Nanjing, China



Presentation Outline

• Introduction

• Background

• Related Work

• Problem and Motivation

• Running Example

• Proposed Approach

• Experimental Evaluation

• Results

• Discussion

• Conclusion and Future Work



Introduction

• Self-adaptive systems change their behavior at runtime to

conform to their goals

• Goals are generally non-functional requirements

– Response time

– Throughput etc.

• Decentralization has become a widespread concept [1]

• Designing self-adaptive software with decentralized

control loop is still a research challenge [1]–

– A control loop helps to respond to the goal violation at runtime

without interrupting its service

12/10/2017 2



Background

12/10/2017

• In self-adaptive system with decentralized control loops,

multiple control loops coordinate to satisfy some goals

• These goals can be divided as –

– Local goal: component-level goal [2]

– Global goal: system-level goal [2]

• A goal violation leads to –

– Coordination of multiple control loop (information sharing) to take

adaptation decisions

– These adaptation decisions / actions are selection of variants

(software variants with different configurations)

– Adaptation decisions must satisfy local and global goals

3



Background: Centralized Self-Adaptive 

Systems

12/10/2017 4

Actions

Analyze Plan

Monitor Execute

Centralized 

Control Loop

Goal: Response 

time ≤ 3ms

Goal: Response 

time ≤ 2ms

Goal: Response 

time ≤ 8ms
Goal: Response 

time ≤ 1ms

Goal: Response 

time ≤ 6ms

Goal: Response 

time ≤ 14ms



Background: Decentralized Self-

Adaptive Systems

12/10/2017 5

Goal: Response 

time ≤ 3ms

Goal: Response 

time ≤ 2ms

Goal: Response 

time ≤ 8ms Goal: Response 

time ≤ 1ms

Goal: Response 

time ≤ 6ms

Goal: Response 

time ≤ 14ms

Control 

Loop

Control 

Loop

Control 

Loop

Control 

Loop
Control 

Loop



Related Work

12/10/2017

20132010 2014

Weyns et al. [4]

• Proposed a generic model 

for decentralized self-

adaptive system

• It was highly abstract and 

did not explicitly address 

coordination of multiple 

control loops 

Wang et al. [3]

• Dynamic service composition 

based on reinforcement learning

• Opponent model-based 

coordination 

• Can be further improved using 

opponent model for both 

learning and action selection 

and updating weight of violated 

goal for more importance

Schmerl et al. [13]

• Proposed five patterns for 

decentralized self-

adaptation

• Facilitated further research 

into this domain

Sykes et al. [5]

• Proposed a distributed self-

assembly approach

• Used aggregated gossip for 

coordination

• Lacked dynamism, used 

static strategies

Grassi et al. [2]

• For self-adaptive service 

assembly

• Used gossip protocol for 

service specification 

dissemination

• Selected best service based 

on predefined utility

• Problem: static utility value

Caporuscio et al. [6]

• Performed TD learning on global 

quality functions of services to 

estimate their long term quality

• Service matching was performed 

by choosing the service that has 

maximum quality

• Local goals and coordination was 

not explicitly considered

6

2011 2016



Problem and Motivation

12/10/2017

• Writing static strategies or action selection rules, similar to some 

centralized control loops is not practical due to large state space

• In a specific state, action selection rules of a local control loop 

depend on the strategies followed by other control loops

• Reward functions (that calculate goal conformance [3]) need to be 

defined in such a way that these successfully capture both local and 

global goal violations

• Reinforcement learning provides a great opportunity to introduce 

dynamism into the self-adaptive decisions

• Each local control loop needs to estimate the strategies used by 

other ones which can be done through an opponent model along 

with multiagent reinforcement learning

• The reward functions can be aggregated with a dynamic weight to 

provide more importance to the violated goals

P
ro

b
le

m
M

o
ti

v
a

ti
o
n

7



Running Example

• The Tele Assistance System (TAS) is a service-based system
that provides medical service to patients [9]

• Three services are used –

– MedicalAnalysisService – Checks the vital parameters of the patient 
and takes actions

– DrugService – Change drug or dosage of the drug

– AlarmService – Provides alarm in case of emergency

• MedicalAnalysisService variants with different configurations

– MedicalAnalysisService1, MedicalAnalysisService2 and 
MedicalAnalysisService3

• AlarmService similarly has three variants

12/10/2017 8



Running Example

12/10/2017 9

Goal Attribute Goal Type Goal Threshold

MedicalAnalysisService

must have response time 

less than or equals 5.6 ms

Response Time Local & Threshold 5.6

AlarmService must have 

response time less than or 

equals 5.2 ms

Response Time Local & Threshold 5.2

MedicalAnalysisService

must have failure rate less 

than or equals 0.12

Failure Rate Local & Threshold 0.12

AlarmService must have 

failure rate less than or

equals 0.

Failure Rate Local & Threshold 0.1

At least one service must 

have failure rate less than 

0.08

Failure Rate Global & Threshold 0.08

Average cost per service 

must be minimized

Average Cost

Per Service
Global & Minimization -



Running Example

12/10/2017 10

Goal Attribute Value Range Corresponding Category

Failure Rate [0, 0.002) Low

[0.002, 0.08) Medium

[0.08, 0.1) High

[0.1, ∞) Extreme

Average Cost Per Service

[0, 2) Low

[2, 5) Medium

[5, ∞) High

Individual Service Response 

Time

[0, 2.5) Low

[2.5, 5.2) Medium

[5.2, ∞) High



Proposed Approach

12/10/2017

• A state is represented by a specific combination of the 

different goal attribute values in different agents 

– {{low,extreme},{high,high},{low}} is a state that expresses that 

MedicalAnalysisService has low response time and extreme failure 

rate, AlarmService has high response time and failure rate and 

globally average cost per service is low

• An action is considered as choosing a specific variant

• The action set of a specific agent consists of all of its 

variants 

• The joint action set is the action selection of all the agents

– {{MedicalAnalysisService1, MedicalAnalysisService2, 

MedicalAnalysisService3},{AlarmService1, AlarmService2, 

AlarmService3}}

11



Proposed Approach

12/10/2017 12



Proposed Approach

12/10/2017

• Reward functions for TAS –

13

Global 

Failure Rate

Reward

Local

Response 

Time Reward



Proposed Approach

12/10/2017

• Reward functions for TAS –

14

Threshold-based reward functions provide [0, 0.5) values for goal violation and [0.5, 

1] values for goal conformance

Local

Failure Rate 

Reward

Average Cost 

Per Service Reward

Total Reward



Proposed Approach

12/10/2017

• Weights need to be updated at runtime for providing more 

importance on reward function values indicating goal 

violation 

• For example, consider four reward functions r1, r2, r3, r4 

– For reward values 0.7, 0.8, 0.3, 0.6, the total reward value is 0.6

– For reward values 0.6, 0.8, 0.5, 0.5, the total reward value is also 

0.6

– The first reward value should be less than the second 

• Solution –

– The weight for 0.3 can be updated to 0.3542 from 0.25

– The remaining weight 0.6458 can be equally distributed among the 

other three agents 

– The total reward value becomes 0.558 

15



Proposed Approach

Action Selection through Q-Learning 

12/10/2017 16



12/10/2017

• An opponent model chooses the maximum next state 

strategy based on other agents’ strategies [8]

17

Opponent Model

Proposed Approach

Action Selection through Q-Learning 



12/10/2017

• The ɛ-greedy strategy is used for action selection

• This provides a balance between exploration and 

exploitation in Q-learning [11]

• ɛ-greedy strategy –

18

Proposed Approach

Action Selection through Q-Learning 

An ɛ value is 
prespecified
where 0 ≤ ɛ< 

1

A value p 
between 0 
and 1 is 

randomly 
selected

If p < ɛ, the 
agent 

chooses a 
random 
action

Otherwise, it 
selects the 
action with 
maximum 
Q-value in 
the current 

state



Experimental Evaluation

12/10/2017

• The Tele Assistance System is used to evaluate the 

proposed approach 

• It is extended to support decentralized adaptation by 

adding a control loop to each of the services 

• The approach is compared to two techniques –

– The first one chooses actions randomly

– The second one learns and chooses actions based on maximum Q-

values without considering opponent models 

• Parameters –

– α, γ and ɛ were chosen to be 0.1, 0.9 and 0.8 respectively 

– A small number 0.001 was chosen as the decay factor 

– 1.25 was chosen as the value of fr

• 19

Chosen through 

empirical 

experimentation



Results: Comparison of Reward

12/10/2017 20



Results: Comparison of Reward

12/10/2017 21



Results: Effectiveness of the Dynamic 

Weight Update Technique

12/10/2017 22



Discussion

12/10/2017

• The reward values are over 0.5 in most cases which 

indicates adaptation

• Reward values are more stable and total reward values are 

higher when opponent model is considered

• The weight update mechanism supports adaptation of 

multiple goals as the reward values remain stable over time

• Q-learning over joint actions become computationally 

challenging in large scale systems

• A promising direction towards solving this problem

can be the use of sparse cooperation Q-learning (future 

work) [12]

23



Conclusion and Future Work

12/10/2017

• A decentralized control loop for self-adaptive

software has been proposed –

– Considering other agent strategies 

– A better total reward calculation mechanism 

• It was evaluated on a Tele Assistance System where it was 

observed that –

– Reward stays over threshold

– Reward values are stable over time

– Both indicates successful self-adaptation

• Future Work –

– Applying to large scale systems 

– Self-tuning the required parameters to achieve the highest reward 

– Tool support

24



References

[1] Rogerio De Lemos, Holger Giese, Hausi A Muller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley

Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel, et al. Software engineering for self-adaptive systems:

A second research roadmap. In Software Engineering for SelfAdaptive Systems II, pages 1–32. Springer, 2013.

[2] Vincenzo Grassi, Moreno Marzolla, and Raffaela Mirandola. Qosaware fully decentralized service assembly. In

Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2013 ICSE Workshop on, pages 53–62.

IEEE, 2013.

[3] Hongbing Wang, Qin Wu, Xin Chen, Qi Yu, Zibin Zheng, and Athman Bouguettaya. Adaptive and dynamic

service composition via multiagent reinforcement learning. In Web Services (ICWS), 2014 IEEE International

Conference on, pages 447–454. IEEE, 2014.

[4] Danny Weyns, Sam Malek, and Jesper Andersson. On decentralized self-adaptation: lessons from the trenches

and challenges for the future. In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and

Self-Managing Systems, pages 84–93. ACM, 2010.

[5] Daniel Sykes, Jeff Magee, and Jeff Kramer. Flashmob: distributed adaptive self-assembly. In Proceedings of the

6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pages 100–109.

ACM, 2011.

[6] Mauro Caporuscio, Mirko D’Angelo, Vincenzo Grassi, and Raffaela Mirandola. Reinforcement learning

techniques for decentralized selfadaptive service assembly. In European Conference on Service-Oriented and Cloud

Computing, pages 53–68. Springer, 2016.

[7] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press

Cambridge, 1998.

[8] Ann Nowe, Peter Vrancx, and Yann-Michael De Hauwere. Game theory and multi-agent reinforcement learning.

In Reinforcement Learning, pages 441–470. Springer, 2012

12/10/2017 25



References

[9] Danny Weyns and Radu Calinescu. Tele assistance: A self-adaptive service-based system examplar. In

Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems, pages 88–92. IEEE Press, 2015.

[10] Gwo-Hshiung Tzeng and Jih-Jeng Huang. Multiple attribute decision making: methods and applications. CRC

press, 2011.

[11] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multiagent systems.

AAAI/IAAI, 1998:746–752, 1998.

[12] Jelle R Kok and Nikos Vlassis. Sparse cooperative q-learning. In Proceedings of the twenty-first international

conference on Machine learning, page 61. ACM, 2004.

[13] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Christian Prehofer, Jochen

Wuttke, Jesper Andersson, Holger Giese, and Karl M Goschka. On patterns for decentralized control in self-adaptive

systems. In Software Engineering for Self-Adaptive Systems II, pages 76–107. Springer, 2013.

[14] Vivek Nallur and Rami Bahsoon. A decentralized self-adaptation mechanism for service-based applications in

the cloud. IEEE Transactions on Software Engineering, 39(5):591–612, 2013.

[15] Ivana Dusparic and Vinny Cahill. Distributed w-learning: Multi-policy optimization in self-organizing systems.

In Self-adaptive and Selforganizing Systems, 2009. SASO’09. Third IEEE International Conference On, pages 20–

29. IEEE, 2009.

12/10/2017 26



Thank You



12/10/2017 28



Background: Action Selection

12/10/2017 29

A B

C1

C2

C3

Service

Components

Goal: Maintaining 

response time ≤ 3ms

Replace C2 with C1

Analyze Plan

Monitor Execute

Control Loop

Variants



Proposed Approach

12/10/2017 30


