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Introduction

• Self-adaptive systems change their behavior at runtime to

conform to their goals

• Goals are generally non-functional requirements

– Response time

– Throughput etc.

• Decentralization has become a widespread concept [1]

• Designing self-adaptive software with decentralized

control loop is still a research challenge [1]–

– A control loop helps to respond to the goal violation at runtime

without interrupting its service
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Background
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• In self-adaptive system with decentralized control loops,

multiple control loops coordinate to satisfy some goals

• These goals can be divided as –

– Local goal: component-level goal [2]

– Global goal: system-level goal [2]

• A goal violation leads to –

– Coordination of multiple control loop (information sharing) to take

adaptation decisions

– These adaptation decisions / actions are selection of variants

(software variants with different configurations)

– Adaptation decisions must satisfy local and global goals
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Background: Centralized Self-Adaptive 

Systems

12/10/2017 4

Actions

Analyze Plan

Monitor Execute

Centralized 

Control Loop

Goal: Response 

time ≤ 3ms

Goal: Response 

time ≤ 2ms

Goal: Response 

time ≤ 8ms
Goal: Response 

time ≤ 1ms

Goal: Response 

time ≤ 6ms

Goal: Response 

time ≤ 14ms



Background: Decentralized Self-

Adaptive Systems

12/10/2017 5

Goal: Response 

time ≤ 3ms

Goal: Response 

time ≤ 2ms

Goal: Response 

time ≤ 8ms Goal: Response 

time ≤ 1ms

Goal: Response 

time ≤ 6ms

Goal: Response 

time ≤ 14ms

Control 

Loop

Control 

Loop

Control 

Loop

Control 

Loop
Control 

Loop



Related Work
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20132010 2014

Weyns et al. [4]

• Proposed a generic model 

for decentralized self-

adaptive system

• It was highly abstract and 

did not explicitly address 

coordination of multiple 

control loops 

Wang et al. [3]

• Dynamic service composition 

based on reinforcement learning

• Opponent model-based 

coordination 

• Can be further improved using 

opponent model for both 

learning and action selection 

and updating weight of violated 

goal for more importance

Schmerl et al. [13]

• Proposed five patterns for 

decentralized self-

adaptation

• Facilitated further research 

into this domain

Sykes et al. [5]

• Proposed a distributed self-

assembly approach

• Used aggregated gossip for 

coordination

• Lacked dynamism, used 

static strategies

Grassi et al. [2]

• For self-adaptive service 

assembly

• Used gossip protocol for 

service specification 

dissemination

• Selected best service based 

on predefined utility

• Problem: static utility value

Caporuscio et al. [6]

• Performed TD learning on global 

quality functions of services to 

estimate their long term quality

• Service matching was performed 

by choosing the service that has 

maximum quality

• Local goals and coordination was 

not explicitly considered

6

2011 2016



Problem and Motivation
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• Writing static strategies or action selection rules, similar to some 

centralized control loops is not practical due to large state space

• In a specific state, action selection rules of a local control loop 

depend on the strategies followed by other control loops

• Reward functions (that calculate goal conformance [3]) need to be 

defined in such a way that these successfully capture both local and 

global goal violations

• Reinforcement learning provides a great opportunity to introduce 

dynamism into the self-adaptive decisions

• Each local control loop needs to estimate the strategies used by 

other ones which can be done through an opponent model along 

with multiagent reinforcement learning

• The reward functions can be aggregated with a dynamic weight to 

provide more importance to the violated goals
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Running Example

• The Tele Assistance System (TAS) is a service-based system
that provides medical service to patients [9]

• Three services are used –

– MedicalAnalysisService – Checks the vital parameters of the patient 
and takes actions

– DrugService – Change drug or dosage of the drug

– AlarmService – Provides alarm in case of emergency

• MedicalAnalysisService variants with different configurations

– MedicalAnalysisService1, MedicalAnalysisService2 and 
MedicalAnalysisService3

• AlarmService similarly has three variants
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Running Example
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Goal Attribute Goal Type Goal Threshold

MedicalAnalysisService

must have response time 

less than or equals 5.6 ms

Response Time Local & Threshold 5.6

AlarmService must have 

response time less than or 

equals 5.2 ms

Response Time Local & Threshold 5.2

MedicalAnalysisService

must have failure rate less 

than or equals 0.12

Failure Rate Local & Threshold 0.12

AlarmService must have 

failure rate less than or

equals 0.

Failure Rate Local & Threshold 0.1

At least one service must 

have failure rate less than 

0.08

Failure Rate Global & Threshold 0.08

Average cost per service 

must be minimized

Average Cost

Per Service
Global & Minimization -



Running Example
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Goal Attribute Value Range Corresponding Category

Failure Rate [0, 0.002) Low

[0.002, 0.08) Medium

[0.08, 0.1) High

[0.1, ∞) Extreme

Average Cost Per Service

[0, 2) Low

[2, 5) Medium

[5, ∞) High

Individual Service Response 

Time

[0, 2.5) Low

[2.5, 5.2) Medium

[5.2, ∞) High



Proposed Approach
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• A state is represented by a specific combination of the 

different goal attribute values in different agents 

– {{low,extreme},{high,high},{low}} is a state that expresses that 

MedicalAnalysisService has low response time and extreme failure 

rate, AlarmService has high response time and failure rate and 

globally average cost per service is low

• An action is considered as choosing a specific variant

• The action set of a specific agent consists of all of its 

variants 

• The joint action set is the action selection of all the agents

– {{MedicalAnalysisService1, MedicalAnalysisService2, 

MedicalAnalysisService3},{AlarmService1, AlarmService2, 

AlarmService3}}
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Proposed Approach
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Proposed Approach
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• Reward functions for TAS –
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Proposed Approach
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• Reward functions for TAS –
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Threshold-based reward functions provide [0, 0.5) values for goal violation and [0.5, 

1] values for goal conformance
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Proposed Approach
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• Weights need to be updated at runtime for providing more 

importance on reward function values indicating goal 

violation 

• For example, consider four reward functions r1, r2, r3, r4 

– For reward values 0.7, 0.8, 0.3, 0.6, the total reward value is 0.6

– For reward values 0.6, 0.8, 0.5, 0.5, the total reward value is also 

0.6

– The first reward value should be less than the second 

• Solution –

– The weight for 0.3 can be updated to 0.3542 from 0.25

– The remaining weight 0.6458 can be equally distributed among the 

other three agents 

– The total reward value becomes 0.558 
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Proposed Approach

Action Selection through Q-Learning 
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• An opponent model chooses the maximum next state 

strategy based on other agents’ strategies [8]
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• The ɛ-greedy strategy is used for action selection

• This provides a balance between exploration and 

exploitation in Q-learning [11]

• ɛ-greedy strategy –
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Proposed Approach

Action Selection through Q-Learning 

An ɛ value is 
prespecified
where 0 ≤ ɛ< 

1

A value p 
between 0 
and 1 is 

randomly 
selected

If p < ɛ, the 
agent 

chooses a 
random 
action

Otherwise, it 
selects the 
action with 
maximum 
Q-value in 
the current 

state



Experimental Evaluation
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• The Tele Assistance System is used to evaluate the 

proposed approach 

• It is extended to support decentralized adaptation by 

adding a control loop to each of the services 

• The approach is compared to two techniques –

– The first one chooses actions randomly

– The second one learns and chooses actions based on maximum Q-

values without considering opponent models 

• Parameters –

– α, γ and ɛ were chosen to be 0.1, 0.9 and 0.8 respectively 

– A small number 0.001 was chosen as the decay factor 

– 1.25 was chosen as the value of fr

• 19

Chosen through 

empirical 

experimentation



Results: Comparison of Reward
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Results: Comparison of Reward
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Results: Effectiveness of the Dynamic 

Weight Update Technique
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Discussion
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• The reward values are over 0.5 in most cases which 

indicates adaptation

• Reward values are more stable and total reward values are 

higher when opponent model is considered

• The weight update mechanism supports adaptation of 

multiple goals as the reward values remain stable over time

• Q-learning over joint actions become computationally 

challenging in large scale systems

• A promising direction towards solving this problem

can be the use of sparse cooperation Q-learning (future 

work) [12]
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Conclusion and Future Work
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• A decentralized control loop for self-adaptive

software has been proposed –

– Considering other agent strategies 

– A better total reward calculation mechanism 

• It was evaluated on a Tele Assistance System where it was 

observed that –

– Reward stays over threshold

– Reward values are stable over time

– Both indicates successful self-adaptation

• Future Work –

– Applying to large scale systems 

– Self-tuning the required parameters to achieve the highest reward 

– Tool support
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Background: Action Selection

12/10/2017 29

A B

C1

C2

C3

Service

Components

Goal: Maintaining 

response time ≤ 3ms

Replace C2 with C1

Analyze Plan

Monitor Execute

Control Loop

Variants



Proposed Approach
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